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We study the critical properties of a nonequilibrium statistical model, the majority-vote model, on heptago-
nal and dual heptagonal lattices. Such lattices have the special feature that they only can be embedded in
negatively curved surfaces. We find, by using Monte Carlo simulations and finite-size analysis, that the critical
exponents 1 /�, � /�, and � /� are different from those of the majority-vote model on regular lattices with
periodic boundary condition, which belongs to the same universality class as the equilibrium Ising model. The
exponents are also from those of the Ising model on a hyperbolic lattice. We argue that the disagreement is
caused by the effective dimensionality of the hyperbolic lattices. By comparative studies, we find that the
critical exponents of the majority-vote model on hyperbolic lattices satisfy the hyperscaling relation
2� /�+� /�=Deff, where Deff is an effective dimension of the lattice. We also investigate the effect of boundary
nodes on the ordering process of the model.
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I. INTRODUCTION

Recently, there has been a growing interest the critical
behavior of statistical-physics models on curved surfaces—
ranging from spin models, such as the ferromagnetic Ising
model �1–4�, the XY model �5,6�, the Heisenberg model �7�,
the q-state clock models �8,9�, to other traditional models,
such as percolation �10�, diffusion �11�, etc. One reason for
this interest is that many newly discovered soft materials
�e.g., carbon nanotubes� show a negatively curved structure
in the nanoscale �12�. One peculiar feature of negatively
curved surfaces is that their boundary is a finite fraction of
the whole geometry �13�. This structure has been verified
having a nontrivial impact on the critical behavior of many
models of statistical physics. For example, in the context of
the Ising model, significant shifts in static and dynamic criti-
cal exponents toward the mean-field values were noticed
�1,2�; small-sized ferromagnetic domains were observed to
exist at temperatures far greater than the critical temperature
�4�; An apparent zero-temperature orientational glass transi-
tion in the XY spin model on a negatively curved surface was
recently demonstrated �6�.

These findings motivate us to investigate another spin
models on negatively curved surfaces. The majority-vote
model �14–17� is a simple nonequilibrium model exhibiting
up-down symmetry that has been argued to belong to the
universality class of the equilibrium Ising model �18�. Ol-
iveira first verified this conjecture on a square lattice with
periodic boundary conditions �i.e., a torus� �14�. Subse-
quently, the majority-vote model has been investigated on
regular lattices �with dimension larger than two�
�16,17,19,20�, random lattice �21�, directed, or undirected
random graphs �22,23�, small world networks �24�, and
scale-free networks �25�, etc. Very recently, it has been found
that the critical behavior of the majority-vote model on

square lattice is also independent of transition rates �e.g., the
Glauber or Metropolis rates� �19�. It has also been observed
that the majority-vote models defined on different complex
networks belong to different universality classes �22–25�.

Our goal in this contribution is therefore to identify the
critical behavior of the majority-vote model when the under-
lying lattice is embedded in a hyperbolic surface, in particu-
lar the heptagonal and the dual heptagonal lattices, and in-
vestigate if such an interaction structure is capable of
modifying the critical exponents. To this end, we use Monte
Carlo �MC� simulations and standard finite-size scaling tech-
niques to determine the critical noise parameter qc �the main
control parameter of the majority-vote model, as well as the
critical exponents 1 /�, � /�, and � /�. Our numerical results
suggest that the critical exponents, in the stationary state, are
different from those of the Ising model confined to regular
and hyperbolic lattices.

In the following Sec. II, we define our model; describe the
quantities we measure and the computational details. In Sec.
III, we present our numerical results and analysis. Finally, we
summarize and contextualize the observations in Sec. IV.

II. MODEL AND SIMULATION

A. Majority-vote model

Following Refs. �14–17,21–24�, the majority-vote model
with noise is defined by a set of spin variables ��i�, where
each spin is associated to one node of the heptagonal lattice
and can take the values �1. The system evolves as follows:
for each spin i, we first determine the majority spin of i’s
neighborhood. With probability q the i takes the opposite
sign of the majority spin, otherwise it takes the same spin as
the majority spin. The probability q is called the noise pa-
rameter and plays the same role of temperature in equilib-
rium spin systems. In terms of q, the probability of a single
spin flip is given by
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w��i� =
1

2�1 − �1 − 2q��iS� 	
j��i

� j
� , �1�

where S�x�=sgn�x� if x�0 and S�0�=0, and the summation
is over all the neighboring spins of the focal site i. The tran-
sition probability �1� satisfies up-down symmetry under the
change of signs of the spins in the neighborhood of i. In the
limit of zero noise, the majority-vote model is identical to the
ferromagnetic Ising model at zero temperature �14,24�.

B. Heptagonal lattice and dual heptagonal lattice

Figure 1 shows two examples of the heptagonal lattice
and the dual heptagonal lattice. One peculiar property of the
heptagonal lattice is that, if we consider the innermost hep-
tagon as the level one, then the number of nodes of a hep-
tagonal lattice with level l can be calculated by using the
formulation �4,9�, N�l�=1+ 15

�5
	 j=1

l �� 3+�5
2 � j − � 3−�5

2 � j�, which
grows exponentially with level l. In other words, the ratio of
the perimeter to the area of the lattice remains finite �about
0.62� in the thermodynamic limit l→� �4�. If we make map
each heptagon in the heptagonal lattice to a node and put a
link between adjacent heptagons, then we get the dual hep-
tagonal lattice �Fig. 1�b��. Since these lattices can only be
embedded in a hyperbolic surface with a constant negative
curvature, they are also called hyperbolic lattices.

C. Measurements and finite-size scaling

In order to study the critical behavior of the model we
consider the magnetization M, the susceptibility 	, and the
Binder’s fourth-order cumulant U. These quantities are de-
fined as follows:

M = m�T�C =�� 1

N
�	

1

N

�i��
T

�
C

, �2�

	 = N�m2�T�C − m�T�C
2 � , �3�

U = 1 −
m4�T�C

3m2�T�C
2 , �4�

where N is the total number of nodes of the hyperbolic lat-
tice, ¯ �T denotes thermodynamics averages taken in the
stationary regime, and ¯ �C stands for configurational aver-
ages.

The above quantities are functions of q and N, in the
critical region, we expect the following finite-size scaling
relations

M�N,q� = N−�/�M̃�N1/�
� , �5�

	�N,q� = N�/�	̃�N1/�
� , �6�

U��N,q� = N1/�Ũ��N1/�
� , �7�

where 
=q−qc and U� is the derivative of Binder’s fourth-
order cumulant with respect to the noise. By the standard
finite-size scaling approach �27�, we assume scaling func-

tions M̃, 	̃, and Ũ that are continuous and differentiable in
the vicinity of the critical noise qc. From the size dependence
of M and 	 we can obtain the exponents � /� and � /�, re-
spectively. One alternative way to detect � /�, since it also
scales as N�/� �27�, is by plotting the maximum value of the
susceptibility versus N.

D. Computational method

We implement our MC simulations on the hyperbolic lat-
tices with various system sizes starting with all spins up and
going from low noise to high noise. It has been pointed out
that this method can reduce the relaxation time considerably,
especially in the low noise limit, compared to starting with
spins randomly oriented up or down �26�. For each given q,
we simulated systems of size N=112, 315, 847, 2240, and
5887 for the heptagonal lattice, and N=85, 232, 617, 1625,
and 4264 for the dual heptagonal lattice. For the sake of
comparison, we also studied the majority-vote on square lat-
tice with free boundary condition. In all simulations, we first
wait 90 000 MC steps to let the system attain stationary state
�in the high noise case, this number reduces to 50 000�, and
then ran another 30 000 MC steps to get the average values.
One MC step contains a sweep of the spins in a
random sequence. After every tenth MC steps, we reshuffle
the random sequence. Each data point presented below
are averages over 500, 300, and 200 trials for N�1000,
1000�N�4000, and N�4000, respectively.

III. NUMERICAL RESULTS AND FINITE-SIZE SCALING
ANALYSIS

Previous investigations have shown that the majority-vote
model undergoes a phase transition from an ordered to a
disordered phase at a critical value of qc. This critical value
depends on the lattice topology �14–16�. It is worth noting
that almost all previous studies assume a periodic boundary
condition of the underlying topology. There are no previous
results for the majority-vote model on regular lattice with a

(b)(a)

FIG. 1. A heptagonal lattice with level 3 �left� and the dual
lattice with level 4 �right�. For the heptagonal lattices with level
l=2,3 ,4 ,5 ,6 ,7, the total number of nodes are 35, 112, 315, 847,
2240, and 5887, respectively. For the dual lattice with level
l=3,4 ,5 ,6 ,7 ,8, the total number of nodes are 29, 85, 232, 617,
1625, and 4264, respectively.
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free boundary condition which is the case for the heptagonal
and dual heptagonal lattices �Fig. 1�. Therefore we proceed
to investigate the majority-vote model on a square lattice
with free boundary condition.

A. Majority-vote model on square lattice
with free boundary condition

In Fig. 2 we present MC results of the majority-vote
model on square lattice with free boundary condition and
plot the magnetization, susceptibility, and reduced fourth-
order cumulant as functions of the noise parameter q for
several values of N. As can be noticed in Fig. 2�a� there is a
phase transition from an ordered state �M �0� to a disor-
dered state �M �0�. In Fig. 2�b�, the susceptibility 	 reaches
a maximum in the critical region for different system sizes
which is another typical signature for the onset of criticality.
The critical point qc can be detected from Fig. 2�c�, where
the curves of the reduced forth-order cumulant U for differ-
ent N intersect with each other. We obtain qc=0.074�5�,
which agrees quite well with that for the majority-vote model
on a square lattice with a periodic boundary condition
qc�0.075 �14,15�.

The results of Fig. 2�c� indicate that a vanishing fraction
of boundary nodes do not change the critical value of q. In
light of this point, we may expect the critical exponents to be
the same. To check this assumption, we plot MN�/� versus

�q−qc�N1/� in Fig. 3�a� using the critical exponents
1 /�=0.5, � /�=0.0625 of two dimensional Ising model �28�.
The excellent collapse of the curves for six different system
sizes corroborates the estimations for qc and the critical ex-
ponents 1 /� and � /�, and verifies the Ising universality class
of the phase transition. On the other hand, the curves for
	N−�/� versus �q−qc�N1/� do not overlap in the critical region
if � /�=0.875 is used �results not shown�, which hints that
the free boundary condition induces a strong finite-size effect
on the fluctuation of average magnetization �the critical ex-
ponent � /��. For this reason, we use finite-size scaling by
plotting 	max �the maximum value of the finite-size suscep-
tibility� as a function of N. We get the slope � /�=0.824�7�
of the best-fit line, as displayed in Fig. 3�b�. The collapse of
the curves for the rescaled susceptibility verifies this estimate
�Fig. 3�c��.

B. Majority-vote model on heptagonal lattice

We now turn our attention to the majority-vote model on
the heptagonal lattice. The simulation results for M, 	, and U
as functions of the noise parameter q for different N are
summarized in Fig. 4. As was shown in Fig. 2�a�, above the
critical noise level, the magnetization disappears for larger
system sizes, whereas it reaches a finite value in the subcriti-
cal region �Fig. 4�a��. The susceptibility values in the critical
region reach their maximal values �Fig. 4�b��, and the re-

(b)(a) (c)

FIG. 2. �Color online� Majority-vote model on a two dimensional square lattice with a free boundary condition. �a� Magnetization M, �b�
susceptibility 	, and �c� reduced fourth-order cumulant U as a function of the noise parameter q for several values of the system size N. In
�c�, within the accuracy of the data, all curves intersect at qc=0.074�5�.

(b)(a) (c)

FIG. 3. �Color online� �a� Data collapse of the magnetization M shown in Fig. 2�a�. The exponents used for the data collapse are
1 /�=0.5 and � /�=0.0625. �b� Log-log plot of the maximum of the susceptibility as a function of N. From it we estimate the critical
exponent � /�=0.824�7� as the best fit of the data points. �c� Data collapse of the susceptibility shown in Fig. 2�c�. The fitting exponents are
� /�=0.0625 and � /�=0.825.
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duced fourth-order cumulants cross at the critical point, giv-
ing qc=0.034�8�.

In order to study the universality class of the model, we
proceed to measure the critical exponents. From Ref. �30�,
we know that the critical exponent � can be obtained from
the scaling behavior of certain thermodynamic derivatives
with respect to q �for example, the derivative of the cumulant
and the logarithmic derivatives of M�. In Fig. 5�a�, we plot
the maximum value of these derivatives as functions of sys-
tem size on a log-log scale. 1 /� obtained from these fits can
be seen in Fig. 5�a�. From combining these two estimates, we
obtain 1 /�=0.30�2�. In Fig. 5�b�, we display the N depen-
dence of the magnetization at qc. From the slope of the
dashed line, which corresponds to the best fit to the data
points, we estimate the corresponding value of the critical
exponent to � /�=0.114�5�. Using these values we proceed
to plot MN�/� against �q−qc�N1/�. From the finite-size scal-

ing assumption that M̃ is a universal function, we should, for
the correct choices of 1 /� and � /�, find a data collapse in
the critical region �29�. In Fig. 5�c� we show that such a data

collapse does indeed occur. In a similar way, we can deter-
mine the value of � /� by fitting the data for 	max as a func-
tion of N in a log-log scale, whose slope predicts
� /�=0.721�7� �Fig. 5�d��. By plotting 	N�/� versus
�q−qc�N1/� with 1 /�=0.3 and � /�=0.722, however, we only
get good collapse for the curves in the supercritical region,
i.e., q�qc �Fig. 5�e��. In the subcritical region the curves
deviate, suggesting an anomalous scaling behavior. This ef-
fect can also be seen in Fig. 3�d� for small system sizes.
Since the boundary vanishes with size in Fig. 3, as does the
deviation from the scaling collapse, but the boundary does
not vanish in Fig. 5 and neither does the deviation, we con-
clude that the boundary is probably causing the anomalous
scaling behavior.

C. Majority-vote model on dual heptagonal lattice

We proceed to investigating the majority-vote model on
the dual heptagonal lattice. As above, we first present our
numerical results for magnetization, susceptibility and re-

(b)(a) (c)

FIG. 4. �Color online� Majority-vote model on the heptagonal lattices. �a� Magnetization M, �b� susceptibility 	, and �c� reduced
fourth-order cumulant U, as a function of the noise parameter q for several values of the system size N. The critical point qc=0.034�8� is
estimated as the point at which the different curves for different N intercept each other.

(a) (b) (c) (d)

(e)

FIG. 5. �Color online� �a� Log-log plot of the size dependence of the maximum values of derivatives of various thermodynamic quantities
used to determine 1 /�. �b�Log-log plot of the magnetization at q=qc as a function of N. The slope of the best fit gives � /�=0.114�5�. �c�
Data collapse of the magnetization M shown in Fig. 4�a�. The exponents used for the data collapse 1 /�=0.3 and � /�=0.115. �d� Log-log plot
of the maximum of the susceptibility as a function of N. From this we estimate the critical exponent � /�=0.721�7� as the best fit of data
points. �e� Data collapse of the susceptibility shown in Fig. 4�c�. The fitting exponents � /�=0.722 and 1 /�=0.3.
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duced fourth-order cumulant as a function of the noise pa-
rameter �Fig. 6�. The qualitative properties of these quantities
as functions of q are similar to the observations in Figs. 2
and 4. Also here, from the intersection of the curves in Fig.
6�c�, we obtain qc=0.087�5�. The critical exponents 1 /�,
� /�, and � /� are estimated in Figs. 7�a�, 7�b�, and 7�d� to
0.32�9�, 0.093�6�, and 0.761�9�, respectively. The data col-
lapse of the magnetization in Fig. 7�c� confirms these mea-
surements. Also here these values do not give a good data
collapse of 	 in the region q�qc.

Up to now, we obtained the critical exponents 1 /�, � /�,
and � /� for the majority-vote model on the heptagonal and
dual heptagonal lattices. These exponents, and thus the uni-
versality classes, are different from the same model on
square lattices. Interestingly, by checking the hyperscaling
relation among the exponents �27�

2�/� + �/� = Deff, �8�

we find that Deff=0.125+0.824�7�=0.949�7� for
the square lattice with free boundary condition,
Deff=0.229+0.721�6�=0.950�6� for the heptagonal lattice,
and Deff=0.187�2�+0.761�9�=0.949�1� for the dual heptago-
nal lattice. Without the finite-size effects mentioned above,
these values are, we believe, consistent with 1. �If the scaling
variable is chosen to be L=N1/2, this means Deff=2.� In terms
of these values and taking the finite-size scaling effect into
account, we propose that our critical exponents for the
majority-vote model on negatively curved surface also sat-
isfy a hyperscaling relation such as the Rushbrooke and Jo-
sephson scaling laws 2�+�=�d=Deff, where d is a dimen-

sion of the underlying lattice. Since the value 1 /� for both
the heptagonal and dual heptagonal lattices are smaller than
0.5, our results can be explained by an effective dimension-
ality of the two hyperbolic lattices greater than 2. �This is
reasonable—the dimensionality of hyperbolic surfaces, em-
bedded in an Euclidean geometry, is also larger than two.�

D. Effect of boundary nodes

From our numerical results, we know that the critical be-
haviors of the majority-vote model on the heptagonal and
dual heptagonal lattices are different. One potential explana-
tion comes from by the different topological structure of the
boundary nodes. �The boundary nodes of the regular hep-
tagonal lattice interacts less with the inner part of the surface
compared with the dual heptagonal case.�

To explore this boundary effect, one straightforward way
is to consider a �regular or dual� heptagonal lattice with a
large size, and investigate the magnetization in the center and
compare that with a heptagonal lattice of a smaller size. In
particular, we perform simulations on the heptagonal lattice
at level 7 �N=5887� and track the magnetization in the inner
part within levels 3, 4, 5, and 6 separately. Then we compare
the results with the magnetization of Fig. 4�a�. The same
procedure is also done for dual heptagonal lattice at level 8
�N=4264�, but within levels 4, 5, 6, and 7, respectively. The
numerical results are summarized in Figs. 8 and 9. We note
that the nonvanishing boundary nodes play different roles in
the ordering processes. As can be observed in Fig. 8, the
magnetization in all the inner parts of a big heptagonal lattice

(a) (b) (c)

FIG. 6. �Color online� Majority-vote model on the dual heptagonal lattices. �a� Magnetization M, �b� susceptibility 	, and �c� reduced
fourth-order cumulant U, as a function of the noise parameter q for several values of the system size N. The critical point qc=0.087�5� is
estimated as the point where the curves for different N intercept.

(a) (b) (c) (d) (e)

FIG. 7. �Color online� �a� Log-log plot of the size dependence of the maximum values of derivatives of various thermodynamic quantities
used to determine 1 /�. �b� Log-log plot of the magnetization at q=qc as a function of N. The slope of the best fit of the points gives
� /�=0.093�6�. �c� Data collapse of the magnetization M shown in Fig. 6�a�. The exponents used for the data collapse 1 /�=1 /3 and
� /�=0.094. �d� Log-log plot of the maximum of the susceptibility as a function of N. From this plot we estimate the critical exponent
� /�=0.761�9�. �e� Data collapse of the susceptibility shown in Fig. 6�c�. The fitting exponents 1 /�=1 /3 and � /�=0.762.
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are greater than that on a heptagonal lattice with same size,
which indicates that the existence of a higher level of bound-
ary can facilitate the ordering of the inner spins. This picture
is changed, however, on the dual heptagonal lattice. In the
subcritical region q�qc, the boundary nodes promote the
ordering process as before. In the supercritical region
q�qc, on the contrary, they impose opposite influence on the
ordering process driving the system toward more disorder
�Fig. 9�. A structural cause for this phenomenon is, we be-
lieve, the different local topologies of the two lattices. Look-
ing at Fig. 1, the nodes one step from the boundary has fewer
connections to the boundary in the heptagonal lattice than its
dual �the path length going from the periphery to the center,
for systems of the same size, are longer�. The boundary is
also more indirectly coupled to the interior in the heptagonal

lattice. The boundary nodes of the dual heptagonal lattice
should thus have a stronger influence on the configuration of
the interior �we hesitate to say “bulk properties” since the
boundary is a finite fraction of the interior�. We expect simi-
lar stronger boundary effects for dual heptagonal lattices also
exists for other statistical spin models defined.

E. Comparisons with the Ising model

In Ref. �14�, Oliveira found that the critical exponents for
the majority-vote model on square lattice with periodic
boundary condition are �=0.99�0.05, � /�=1.73�0.05,
and � /�=0.125�0.005 �the linear dimension L is selected
as the scaling variable�. These results demonstrate the
majority-vote model on a torus has the same universal criti-
cal behavior as the equilibrium Ising model. Recently, Yang
et al. investigated a slightly different majority-vote model
on d-dimensional hypercubic lattices. Their model can be
derived from original by replacing the temperature parameter
by a noise parameter in such a way that tanh�1 /kT�
= �1−2q� �20�. Their simulation results suggest that the criti-
cal exponents for the majority-vote model in three dimen-
sions are different from those of the Ising model, and that the
results for four and five dimensions are far from the standard
mean-field values. For their version of the majority-vote
model in two dimensions, the global and local configuration
energy differences between before and after spin-flipping are
not identical �31�, but the sign of both energies is the same,
whereas for d3, the sign of the two types of energy differ-
ences is not always the same. For the Ising model, however,
the differences of the global and local configuration energy
are exactly identical, regardless of dimension. They conjec-
tured that the discordance of the sign of the energy difference
between the global and local energy is responsible for the
different critical behaviors. Observe that our critical expo-
nents 1 /��0.3 and 0.33 in Figs. 5�a� and 7�a�, which are
smaller than 0.5, so from the hyperscaling relation �d=1
�d is the dimension� we see that our hyperbolic lattices can
be described as having an effective dimensionality greater
than 2, but smaller than 4. In this sense, our present work
provides complementary support for the results obtained in
Ref. �20�. In another recent work �1�, Shima et al. studied the
Ising model on heptagonal lattices and found the critical ex-
ponent � /�=0.655. Since our critical exponent � /�, also
considering the estimated error, is quite different from this
value, we believe that the majority-vote model on the hep-
tagonal lattice belongs to a different universality class as the
Ising model on this topology. This result can be regarded as
another evidence for the conjecture by Yang et al. �20� men-
tioned above.

IV. CONCLUSIONS

To summarize, we have studied the critical behavior of
the majority-vote model on the heptagonal and dual heptago-
nal lattices. These lattices possess a peculiar property: the
ratio of the size of the boundary to the total size remains
finite even in the thermodynamic limit. Finite-size scaling
analysis reveals that the critical exponents for magnetization

FIG. 8. �Color online� Magnetization M as a function of the
noise parameter q. �a� Filled squares represent the magnetization at
the inner level 3 of the heptagonal lattice with seven levels in total.
Open circles represent the heptagonal lattice with three levels. �b�,
�c�, and �d� show the same situation as �a� but for different levels.

FIG. 9. �Color online� Magnetization M as a function of the
noise parameter q. �a� Filled squares symbolize the magnetization
in the inner level 4 of the dual heptagonal lattice with eight levels in
total. Open circles represent the heptagonal lattice with four levels.
�b�, �c�, and �d� show plots corresponding to �a� for other levels.
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and susceptibility deviate from those of the majority-vote
model on a torus �which belongs to the same universality
class as the equilibrium Ising model� and are also different
from those of the Ising model on heptagonal and dual hep-
tagonal lattices. In particular, the best fit of these exponents
provided � /�=0.114�5�, � /�=0.721�7� for the heptagonal
lattice, and � /�=0.093�6�, � /�=0.761�9� for the dual hep-
tagonal lattice. By comparing to the majority-vote model on
square lattices with free boundary conditions, we found that
the free boundaries result in strong finite-size scaling effect,
which in turn leads to the measured effective dimensionality
smaller than unity. Nonetheless, we believe that the critical
exponents of the majority-vote model defined on negatively
curved surface also satisfy the hyperscaling relation
2� /�+� /�=Deff.

Furthermore, for the hyperbolic lattices, we also investi-
gated the effect of the boundary nodes on the ordering pro-
cess. It was shown that the boundary nodes have different
functions in our two lattices. For the heptagonal lattice, the

boundary has a positive influence on ordering, whereas for
the dual heptagonal lattice the boundary nodes can either
facilitate or inhibit ordering depending on the magnitude of
the noise. These findings are further evidence that the under-
lying geometric structure determine the critical properties of
the majority-vote model. For the future, it will be interesting
to explore the effect of boundary nodes on the ordering pro-
cesses of other statistical spin models defined on hyperbolic
lattices.
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